If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2+3m-9=0
a = 4; b = 3; c = -9;
Δ = b2-4ac
Δ = 32-4·4·(-9)
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{17}}{2*4}=\frac{-3-3\sqrt{17}}{8} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{17}}{2*4}=\frac{-3+3\sqrt{17}}{8} $
| (5+x)+35=5+(12+35) | | 3y-9+3=8 | | 2x+12=4×+20 | | 23-3x=32 | | 9d+10=19 | | 2x^+4x+7=0 | | 2(b+9)=18 | | 12x+2-8x=86 | | 20+0.35x=35+0.15x | | 1x+2=19 | | 1x+2=1x+18 | | 90(60)(3x-9)= | | -2x+3=53 | | u^2+u8+15=0 | | 1.2x-5=23 | | (y-6)^2=2y^2-6y+44 | | 2(z+3)=-9 | | x^2+10x+20=7 | | 5^2x+3=7^4x | | 5x+10+2x+15=2+3x+7 | | x^2-2x-10=-8 | | -4(x)=-x^2+6x+8 | | C=35d+1,200 | | –8r−1=–7r−10 | | –10+h=6h | | -8x+20=100 | | -8x+20=400 | | -s+82=2s-63 | | 0.5(x+12)=-3+0.75(x-4) | | 80+y+3y=180 | | (2)(2^x-5)=9.32 | | (8x−71)°=(5x+7)° |